From Algorithms to Computational Thinking in K-12: the Lithuanian Experience

> **Prof. dr. Valentina Dagienė** valentina.dagiene@mii.vu.lt

> > Vilnius University

Lithuania – LIETUVA

- ✤ Territory 65 300 km²
- ✤ Population about 3 mln.
- ✤ Vilnius about 0,5 mln.
- Currency Euro (2015)
- Borders: with Belorussia, Latvia, Poland, Russia and Baltic sea

The General Education Structure in Lithuania

Short glance to Informatics/IT at School

"Prehistory" of teaching programming

- ✤ ~40 years ago (in 1975) the idea of nation wide teaching of programming in schools in Lithuania has emerged.
- Implementation: Teaching material was prepared.
- In 1979–1981 the Experimental School of Programming by Correspondence was organized.
- ✤ 34 years ago (January 1981) –

Young Programmer's School by Correspondence was established officially Jaunųjų programuotojų mokykla

Pirmoji pamoka

3-

s.

15

ALGORITMAI

Gyvenime labai dažnai sutinkame iš anksto numatytus nurodymus, kuriuos reikia vykdyti norint allikti konkretų darbą. Pavyzdžiui, prie telefono automato galima rasti instrukciją, kurioje trumpai ir aiškiai pasakyta, ką reikia daryti, norint paskambinti:

"1. Įmeskite dviejų kapeikų monetą į automato skylę.

 Nukelkite ragelj ir laukite signalo.

 Išgirdę ilgą, nepertraukiamą gaudesį, surinkite reikiamą numerį ir laukite atsakomojo signalo.

 Išgirdę ilgus gaudesius, laukite, kol abonentas atsakys.

 Išgirdę trumpus, dažnai pasikartojančius gaudesius, pakabinkite ragelį ir išlinkite monetą: jums reikalingas abonentas užimtas".

Panašios instrukcijos sudaromos ir uždaviniams spręsti. Pavyzdžiui, dviejų skaičių a ir b aritmetinio vidurkio radimą galima nusakyti nurodymais:

 Sudėkite duotus du skaičius.
 Gautą sumą padalykite iš dviejų.

tai du labai skirtingi procesai. Tačiau jie turi ir bendrų bruožų. Abu procesai aprašyti trumpais ir aiškiais nurodymais. Tų nurodymų seka ir sudaro elgoritmą. Tiksliai atlikę aprašytus nurodymus, gauname reikiamą rezultatą: paskambiname telefonu, randame aritmetinį vidurkį.

Algoritmu vadinami aiškūs ir visų vienareikšmiškai suprantami nurodymai, nusakantys veiksmų procesą, kaip iš turimų duomenų gauti reikiamą rezultatą. Turimi duomenys vadinami pradiniais. Jie žinomi prieš atliekant algoritmą. Rezultatai dar vadinami galutiniais duomenimis. Jų reikšmės sužinomos atlikus algoritmą. Dviejų skaičių vidurkio algoritmą. prediniai duomenys yra du duoti skaičiai, o galutinis — vidurkis.

Algoritmai užrašomi ivairiai. Jų užrašymo pavidalas, nurodymy skaičius ir defalumas priklau. so nuo to, kam jie skirti, t. y. kas atliks algoritmo nurodymus (spres uždavinj). Jelgu norima, kad uždavinį spręstų mašina, jį reikia užrašyti mašinai suprantamu pavidalu. Tokie algoritmai vadinami programomis, Mes ir nagrinėsime programas. Pradėsime nuo paprastų uždavinių, kuriuos nesunku būtų išspresti ir be ESM. Palaipsniui uždavinių "svorj" didinsime, Sudarysime ir tokių uždavinių programas, kuriuos be ESM isspresti būtu per sunku ar iš viso nejmanoma.

The first lesson of JPM (Young Programmer's School) published 1981-01-27 in daily newspaper "Komjaunimo tiesa"

TRYLIKTOJI PAMOKA

Skyreli tvarko LTSR MA Matematikos ir kibernetikos instituto jaunesnioji mokslinė bendradarbė Valentina DAGIENE

Programuotojai, rašantys nealškias, griozdiškas programas, mėgsta teisintis, kad programa skirlama kompluterlui, o ne imogui. Be abejo, kompiuteriui programos alškumas nesvarbus - jis mechaniskat atlieka veiksmus ir nesidomi programos valzdumu. Tačiau kad ir kaip atrodytų keista, didžiausias programų skaitytojas vis dėlto yra žmogus, o ne kompluteris. Skaltydamas programas, žmogus susipažįsta su kitu programuotojų idėjomis ir patirtimi, mokosi pats sudarinėti programas. Dažnai tenka tobulinti ir pačių sumentarais galima paaiškinti ne tik kintamųjų vardus, bet ir atskiras programas dalis, nurodyti, ką vienas ar kitas sakinys atlieka ir panašiai. Komentarus galima įterpti visur tarp atskirų simbolių, žodžių, skaičių, vardų. Jie suskliaudžiami skliaustais (*ir*).

PROGRAMAVIMO

KULTŪRA

Komentarai padeda greitai ir lengvai skaityti programas. Tačiau jais nereikia piktnaudžiauti — komentarai turi būti Jakoniški, griežti, trumpai nusakantys pagrindinius dalykus, neužgriozdinantys programos teksto.

Paminėsime dar vieną programavimo kultūros elementą — programų redagavimą. Redagavimu vadinamas programos teksto išdėstymas popieriaus lape. Nekyla abejonių, kad žmogul kur kas lengviau skaityti vaizdžiai išdėstytą programą. Be to, tokioje programoje būna mažiau klaidų (pavyzdžiui, sunkiau pamiršti žodi end tei lis rašomas no rojo ménesio pabalgoje prieauglį duos tik pirmoji pora, todėl turėsime tris poras, o dar po mėnesio prieauglį duos ir pradinė pora, ir pora, gimusi prieš du mėnesius. Todėl iš viso bus 5 poros.

Simboliu F(n) pažymėkime triušių porų skaičių, kurį turėsime po n mėnesių. Matome, kad n-ojo mėnesio pabaigoje turėsime tiek porų, kiek jų buvo prieš mėnesį, t.y. F(n-1) ir dar tiek naujų porų, kiek jų buvo prieš du mėnesius, t.y. (n-2)-ojo mėnesio pabaigoje. Kitaip sakant, gausime tokią priklausomybę:

F(n) = F(n-1) + F(n-2)

Pateiksime programą triušių porų skaičiui po n mėnesių spausdinti.

program fibonacei;

var fn, (* F(n) *) fn1, (* F(n-1) *)

fn2, (* F(n-2)*)

n, (* ménesių skaičius*) k: integer; for s:=1 to n do begin write (s); for d:=1 to n do if s mod d=0 then write ('+'); writeln end

end.

Jis nėra efektyvus, tačiau kadangi iš uždavinio sąlygos nerealu, kad n būtų labai didelis, tai skaičiavimų bus nedaug ir nėra reikalo šiuo aspektu tobulinti programos.

KONTROLINIAI UZDAVINIAI

13. Duota programa: program atspėk; var a, b, c, i, j: integer; begin read (n); a:=1; b:=1; for i:=0 to n do begin for j:=1 to b do write ('*'); writeln; c:=a+b; a:=b; b:=c end

end.

Ką išspausdins kompluteris, atlikęs šią programą, jei pradinis duomuo yra 7? Kokio uždavinio sprendimas užrašytas šia programa? (7 balai)

The curriculum and content

- Names, variables, values, assignment statement and sequence of statements
- Branches of actions
- Repetition (Loop)
- Program and its running by computer
- ✤ Logical values
- Functions and procedures
- ✤ Recursion
- ✤ Discrete data types
- Real numbers and records
- ✤ Arrays
- Programming style
- Program design
- ✤ Efficiency

Program reading was considered as important as writing

- Programmer must be able to read and investigate the programs designed by other programmers.
- Program analysis reading makes a considerable part of home tasks.
- Pupils were asked to modify a program in order to adapt it to another similar problem, to restore the omitted parts of its text, etc.

Development periods of the Young Programmer's School by Correspondence

- 1. General programming teaching (1981–1986)
- 2. Learning effectively: differentiation by students' abilities (1986–1993)
- 3. Intensive teaching of gifted students (1993–1999)
- 4. Training students for the Informatics Olympiads (1999–2005)
- 5. Using new media (virtual learning environment) while learning algorithms (since 2005)

What is valuable: Lessons learned

- Tasks: Interesting, attractive tasks (small pieces) and problems (connected to real world) for students
- Flexible learning: Learning should occur anytime anywhere
- Learning resources: Divide learning material in pieces, combine practical problems with theoretical approaches
- Teaching resources: Well-prepared material for teachers
- Face-to-face meetings: summer camps, teacher training sessions...
- The successful introduction Informatics is determined by a change of mental habit and promoting co-operation among researchers, policy makers, and teachers

Logo

- Learning Logo
- Logo contests
- Logo workshops for teachers
- Books for schools (project-based method)
- "Comenius Logo" learning environment

Valentina Dagiene and Seymour Papert Hanoi, Vietnam, 2006

Informatics in schools of Lithuania: 1986

- The official beginning of informatics as a subject in schools of Lithuania is dated back to 1986
- Main idea: introduce each pupil to a computer
- Programming is the second literacy
 prof. Andrei Ershov, a founder of the Siberian School of CS
- We translated the textbook and added a chapter on Pascal programming language

Informatiko/ ir /kaičiavimo techniko/ pagrindai II dali/

Informatics in schools of Lithuanian: 1991

- In 1991 the first curriculum for teaching informatics in secondary schools was developed
- An original Lithuanian textbook of Informatics was written just after Lithuania has regained independence
- The course was lectured for two years in school-leaving grades 10th – 12th of upper secondary schools composing it in different ways

Informatics in schools of Lithuanian: 1997

Since 1997 the teaching of informatics essentially changed:

- the compulsory course for the 9th and 10th grades was introduced
- Informatics remained compulsory for the 11th and 12th grades as well
- the possibility to take advanced optional modules was provided

Informatics in schools of Lithuanian: 2005

- Since 2005 the basics of informatics and IT as a separate subject has been introduced to grades 5 and 6
- Changing name: Informatics to Information Technologies or IT
- ✤ IT a compulsory subject at 5 –10 grades
 - ✤ 1 hour per week (35 hours per year) for grades
 - ✤ 5 and 6
 - ✤ 7 or 8
 - 9 and 10
- Optional modules for grades 11 and 12 programming, data base, desktop publishing – for upper secondary school

Lower Secondary School, grades 5-10

Upper Secondary School, grades 11-12

- Introduction to programming
- ➡ Desktop publishing
- → Webpage design

IT in 5–6 grades

Themes, subthemes	IT hours	Subjects, integration is addressed to
Introduction to computer application	10	
Principles of computer use	6	
Drawing with computer	4	Art; 10
Text and keyboard	14	Mother tongue; 10
Internet and electronic mail	10	Mother tongue; 4 Foreign language; 10
Modeling (<i>Logo</i> or <i>Scratch</i>)	24	

Textbook for 5-6 grades

- Introduction to computer
- Drawing
- Text processing
- Internet and emails
- Modeling (Logo)

Contents of Informatics and IT subjects

9-10 grades (Compulsory course)	11-12 grades (<i>Optional</i> course)	11-12 grades (<i>Advanced</i> <i>modules</i>)
Computer (principles of the work)	Advanced elements of text editing	Data base
Text processing	Presentation	Multimedia
Information (basics of information handling)	Web and email	Programming
Algorithms (main concepts and commands)	Social and ethical issues of using IT	
	Spreadsheet	

Matriculation in Lithuania

- All high school students are required to take matriculation exams in main subjects studied in high school: at least two and not more than 6.
- Informatics (IT + Programming) is one of them
- The exams are external nation wide exams National Examination Centre is responsible.
- ✤ Evaluation of an exam is by points from 16 to 100.

Informatics exam structure

Two parts	Questions	Scores
Computer literacy tasks	 1-2 multiply choice questions 2-3 short answer questions 2-3 open-ended questions 1 task with text processing 1 task with spreadsheet 	10 20 20
Programming tasks	2 or 3 practical tasks to be programmed	50

Components of curriculum of programming exam

Algorithms	Data structures	Control structures
Calculation of the sums (of product, quantity, and arithmetical average).	Integer and real, char, boolean, and string .	Program structure. Comments.
Search of the maximal (minimal) value.	Text file. One-dimension	Variables. Assignment and sentence. Logical operations, if statement.
Data input/output. Data sorting.	array. Record.	Loops. Compound statement.
Modification of algorithms according to the particular data structures.	Development of data structures.	Procedure and function. Parameters and arguments. Standard files.
	nt. Technology of pro	cedural programming. Testing.

Program documentations. Arrangement of dialog. Program writing (style)

Programming tasks

✤ A first task is intended to examine the students' abilities

- to use the procedures or functions,
- ✤ to use the data types,
- to realize the algorithms for work with data structures,
- ✤ to manage with input and output in text files.
- A second task is intended to examine the students' understanding and abilities to implement data structures. The core of the task is to develop the appropriate structures of records together with arrays. Students usually are asked:
 - to input data from the text file to arrays containing the elements of record type,
 - to perform operations by implementing algorithms,
 - ✤ to present the results in a text file.

Evaluation system

- Both tasks intentionally requires to write batch style programs, as they are more suitable for blackbox testing.
- Semi-automatic evaluation system with blackbox testing is developed for evaluation of programs.
- Exam evaluation system has different requirements than systems used in programming courses or programming contests

Evaluation schema of a programming task

First task: evaluation criteria		Comments	
Tests	20	If the program provides correct outputs to all tests.	
Correct reading from file	4	-	
The result is outputted correctly	2		
The function, which calculates the number of chess sets that can be collected from the pieces brought by the students is created	5	Evaluated only if the program scores no points for the tests.	
Other functions, procedures (if there are ones) and the main program are correct	9		
The data type of array is declared correctly	1		
The function is crated			
Meaningful names of the variables. Program parts are commented, spelling is correct.	1	Always evaluated.	
Programming style is consistent, no statements for working with the screen.	2		
Total	25		

Modern curriculum: Informatics and IT

- **1.** Understanding and analysis of problems based on logical and abstract thinking, algorithmic thinking, algorithms and representations of information.
- 2. Programing and problem solving by using computers and other digital devices designing and programming algorithms; organizing, searching and sharing information; utilizing computer applications.
- 3. Using computers, digital devices, and computer networks principles of functioning of computers, digital devices, and computer networks; performing calculations and executing programs.
- **4.** Developing social competences communication and cooperation, in particular in virtual environments; project based learning; group projects; equity.
- 5. Observing law and security principles and regulations respecting privacy of personal information, intellectual property, data security, netiquette; positive and negative impact of technology on culture, social live and security.

Supporting activities

- Teacher preparation:
 - a teacher is the most important "technology"!
- Standards, evaluation and support in a classroom
- In-service training at universities based on standards
- Web service materials, MOOCs
- Comments to the curricula of other subjects how to use computational thinking in solving problems
- PBL and flipped learning extra hours of school learning
- ✤ Gamification
- Contests: Bebras, Olympiads...
- Informatics oriented tasks in national school tests

Challenges

- How to motivate and engage students through K -12, for 12 years, e.g. learning programming requires constant practice
- ✤ The role of coding programming
- When and how to switch from visual to textual programming?
- Visual for beginners, non-professional
- Textual for those who seriously think about CS we don't want to loose them

The curriculum – general comments

Informatics ≠ programming Concepts before tools, before programming

Grades 7-9 – focus on real world problems and applications which are meaningful for pupils
Grades 10-12 and vocational schools – CS/ICT specializations

The curriculum – the role of programming

- Remember: Informatics ≠ programming
- How to use extra curricular coding activities (e.g. the Hour of Code) in the classroom?

Programming

- Programming is a tool, not a goal
- Which programming language? there are 3000
 - any, which can be used to introduce and illustrate concepts
 - introduce new constructs when needed
 - a program is a message for a computer and also to other people
 - different languages different programming methods
 - visual versus textual languages and programming

Methods of introducing Informatics concepts

Use all three forms of activities:

- **visual learning:** pictures, objects, abstract and physical models, ...
- auditory learning: exchange ideas, discussions, group work, ...
- kinesthetic learning physical activities
- Learn/teach in environments of three stages:

cooperative games and puzzles that use concrete meaningful objects – discovering concepts: Bebras tasks, The Hour of Code

computational thinking about the objects and concepts – algorithms, solutions

programming – Scratch, The Hour of Code, Logo

- ✤ Bebras tasks the source of problem situations
- The Hour of Code introduction to (visual) programming with puzzles

The Hanoi Towers

- The Hanoi Towers story
- In the beginning: ask kids to play and try to find "an algorithm" and calculate the number of moves for different numbers of rings
- Expected: algorithms and tables with the number of moves
- Then: kids play with (against) a computer program
- Finally: they verify initial findings
- Extra (MS, HS): recursive solution, minimum number of moves

- Concepts:
- ✤ game
- ✤ algorithm
- efficiency (complexity)
- ✤ recursion

Shortest path – introduction

Kids are working with **real situation** – motivates them:

- Computer: Find your house and your school on the Google map. Find your way to/from school
- Find shortest paths (distance and time) to/from school by different transportation means: on foot, by bicycle, by car, public transportation
- Paper and pencil: Table to compare which is the shortest path (time/distance) to school?

Shortest path – PISA task

From Einstein to Diamond it takes 31 min – which way?

- Concepts:
- \diamond graph models
- ✤ algorithm
- ✤ greedy approach
- shortest paths
- Dijkstra's algorithm

✤ symmetry

Typical approach, a greedy type: the nearest neighbor method. It doesn't work!

However it works when you go from Diamond to Einstein !!! Think: Dijkstra's algorithm is a greedy method and optimal

Shortest path – Beaver task

From START to FINISH

Find the quickest path from START to FINISH. The hours in the figure indicate how much time must be spend to travel between the adjacent stations.

Conclusions

With the modern Informatics/IT curriculum:

- Students acquire a broad overview of informatics/IT and applications.
- Teaching informatics focuses on problem solving and CT.
- IT/Informatics is taught independently of application software, languages, environments – students are free to make their own choice.
- IT/Informatics is taught using problem situations coming from school subjects and real-world applications.
- IT/Informatics education provides a background for the professional use of computers in other disciplines.
- Students experience a solid foundation in CT through problem solving with computers
- Students experience that programming is a creative process.
- Students learn how to collaborate on projects.
- IT/Informatics enables innovation also in other fields.
- PBL and flipped methods contribute to personalization of learning.

Thanks you for your attention!

STAS

valentina.dagiene@mii.vu.lt